رفتن به محتوای اصلی
x

پردازش سیگنال های حیاتی

معرفی هسته پردازش سیگنال های حیاتی

در این گروه روشهای گوناگون و جدید پردازش سیگنال بررسی می شود و تکنیک هایی برای آنالیز و طبقه بندی سیگنالهای پزشکی مورد استفاده قرار می گیرد. تاکید بیشتر بر روی سیگنال های زیر می باشد:

  •  EEG
  • ECG
  •  EMG
  • VCG
  • آکوستیک
  • P300
  •  P-H
حوزه های فعالیت
  • Event detection
  • Diagnosis
  • Noise removal
  • Classification  
  • Prediction
  • Acoustic analysis
  • P-H monitoring

 

طرح های تحقیقاتی:

 

نام طرح

مدیر طرح / ایمیل

کمیته تخصصی

پردازش صوت به منظور تحلیل مانور LFM

دکتر سقایی-دکتر ربانی

rabbani.h@ieee.org

پردازش سیگنال های حیاتی

تعیین میزان آمادگی بیمار برای جدا شدن از ونتیلاتور توسط تحلیل صداهای تنفسی

دکتر سقایی-دکتر ربانی

rabbani.h@ieee.org

پردازش سیگنال های حیاتی

بررسی کیفی درست قرار گرفتن ماسک حنجره ای توسط تحلیل صدای حنجره ای

دکتر سقایی-دکتر ربانی

rabbani.h@ieee.org

پردازش سیگنال های حیاتی

آنالیز سیگنال مانومتری و PH monitoring با استفاده از یادگیری عمیق

 

دکتر ادیبی- دکتر ربانی

rabbani.h@ieee.org

پردازش سیگنال های حیاتی

ارائه یک چارچوب مبتنی بر یادگیری عمیق برای حل مسایل تصور حرکتی چند کلاسه خانم دکتر زهرا بهار لویی پردازش سیگنال های حیاتی
تشخیص احساسات با استفاده از سیگنال‌های مغزی بر روی دستگاه‌های نهفته خانم دکتر زهرا بهار لویی پردازش سیگنال های حیاتی
طراحی و پیاده‌سازی الگوریتم طبقه‌بندی تصور حرکتی دست چپ و راست مبتنی بر شبکه عصبی پیچشی خانم دکتر زهرا بهار لویی پردازش سیگنال های حیاتی

 

 

مقالات منتشر شده در این حوزه:

Event detection

  • Rabbani, Hossein, et al. "Ischemia detection by electrocardiogram in wavelet domain using entropy measure." Journal of research in medical sciences: the official journal of Isfahan University of  Medical Sciences 16.11 (2011)
  • Rabbani, Hossein, et al. "R Peak Detection in Electrocardiogram Signal Based on an Optimal Combination of Wavelet Transform, Hilbert Transform, and Adaptive Thresholding." Journal of medical signals and sensors 1.2 (2011): 91.
  • A Farahabadi, E Farahabadi, H Rabbani, MP Mahjoub “Detection of QRS complex in electrocardiogram signal based on a combination of hilbert transform, wavelet transform and adaptive thresholding”. Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS
  • H Rabbani, MP Mahjoob, E Farahabadi, A Farahabadi, AM Dehnavi “Ischemia detection by electrocardiogram in wavelet domain using entropy measure”. Journal of research in medical sciences

Diagnosis

  • M. Kashefpoor, H. Rabbani, and M. Barekatain, "Automatic Diagnosis of Mild Cognitive Impairment Using Electroencephalogram Spectral Features," J Med Signals Sens, vol. 6, pp. 25-32, Jan-Mar 2016
  • M. Kashefpoor, H. Rabbani, M. Barekatain, "Supervised dictionary learning of EEG signals for mild cognitive impairment diagnosis", Biomedical Signal Processing & Control, vol. 53, pp. 101559,  2019.

Noise removal

  • Golabbakhsh, Marzieh, Monire Masoumzadeh, and Mohammad Farzan Sabahi. "ECG and power line noise removal from respiratory EMG signal using adaptive filters." Majlesi Journal of Electrical Engineering 5.4 (2011)
  • M Golabbakhsh, M Masoumzadeh, MF Sabahi “ECG and power line noise removal from respiratory EMG signal using adaptive filters”. - Majlesi Journal of Electrical Engineering, 2011
  • qE Farahabadi, A Farahabadi, H Rabbani, MP Mahjoob, AM Dehnavi “Noise removal from electrocardiogram signal employing an artificial neural network in wavelet domain” Information Technology and Applications in Biomedicine, 2009. ITAB 2009.

Classification

  • Dehnavi AR, Farahabadi I, Rabbani H, Farahabadi A, Mahjoob MP, Dehnavi NR. Detection and classification of cardiac ischemia using vectorcardiogram signal via neural network. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2011 Feb;16(2):136.
  • Bazargani, Mehdi; Tahmasebi, Amir; Yazdchi, Mohammadreza; Baharlouei, Zahra. An Emotion Recognition Embedded System using a Lightweight Deep
    Learning Model. Journal of Medical Signals & Sensors 13(4):p 272-279, Oct–Dec 2023. | DOI: 10.4103/jmss.jmss_59_22
  • N. Abdollahpour, M. Yazdchi and Z. Baharlouei, "A Deep Learning-Based
    Pipeline for Multi-Class Motor Imagery Problems with Small Portion of Labeled Datasets," 2022 29th National and 7th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, Islamic Republic of, 2022, pp. 184-190, doi: 10.1109/ICBME57741.2022.10053052.
  • N. Abdollahpour, M. Yazdchi and Z. Baharlouei, "EEG Artifact Removal Based on Brain Dipoles' Regions Using ICA and Dipfit in Motor Imagery
    Tasks," 2022 29th National and 7th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, Islamic Republic of, 2022, pp.
    22-27, doi: 10.1109/ICBME57741.2022.10052870.

Prediction

  • Shayegh, Farzaneh, et al. "A Brief Survey of computational Models of normal and Epileptic EEG Signals: A Guideline to Model-based Seizure Prediction."Journal of medical signals and sensors 1.1 (2011): 62.
  • Dehnavi, Alireza Mehri, Mohammad Reza Sehhati, and Hossein Rabbani. "Hybrid method for prediction of metastasis in breast cancer patients using gene expression signals." Journal of medical signals and sensors 3.2 (2013): 79.

Acoustic Analysis

  • Esmaeili N, Rabbani H, Makaremi S, Golabbakhsh M, Saghaei M, Parviz M, Naghibi K. Tracheal sound analysis for automatic detection of respiratory depression in adult patients during cataract surgery under sedation. Journal of Medical Signals and Sensors. 2018 Jul;8(3):140.

P300 Detection

  • Tajmirriahi M, Amini Z, Rabbani H, Kafieh R. An Interpretable Convolutional Neural Network for P300 Detection: Analysis of Time Frequency Features for Limited Data. IEEE Sensors Journal. 2022 Mar 14;22(9):8685-92.

P-H monitoring

  • Rasouli A, Rabbani H, Raisi M, Soheilipour M, Adibi P. Liquid gastroesophageal reflux characterization by investigating multichannel intraluminal impedance-pH monitoring data. In2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019 Jul 23 (pp. 4636-4639). IEEE.
  • Kenari AR, Rabbani H, Kermani S, Raisi M, Soheilipour M, Adibi P. A Multichannel Intraluminal Impedance Gastroesophageal Reflux Characterization Algorithm Based On Sparse Representation. IEEE Journal of Biomedical and Health Informatics. 2021 Apr 28;25(9):3576-86.

VCG

  • Dehnavi AR, Farahabadi I, Rabbani H, Farahabadi A, Mahjoob MP, Dehnavi NR. Detection and classification of cardiac ischemia using vectorcardiogram signal via neural network. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2011 Feb;16(2):136.
  • Mehridehnavi A, Salehpour N, Rabbani H, Behjati M. Partial linear transformation of vectorcardiogram to 12 lead electrocardiogram signals. In2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE) 2012 Nov 11 (pp. 91-94). IEEE.
  • Salehpour N, Mehridehnavi A, Rabbani H, Behjati M. Partial Linear Transformation between Frank XYZ Leads Vectorcardiogram and 12-Lead Electrocardiogram Signals. Journal of Isfahan Medical School. 2014 Oct 23;32(302):1557-66.

 

بانک داده ها (دانلود)

  • EEG Signals From Normal and MCI ( Mild Cognitive Impairment ) Cases
  • Vectorcardiography ( VCG )
  • Multichannel Intraluminal Impedance data belonging to 26 individuals
  • Voice Samples of Patients with Parkinson’s disease (spontaneous swallows in Parkinson’s disease
  • Voice Samples of Patients with Internal Nasal Valve Collapse Before and After Functional Rhinoplasty

 

ax