

Brain-Computer Interfaces

Zahra Amini

Assistant Professor

School of Advanced Technologies in Medicine

Isfahan University of Medical Sciences

Introduction

 Communication or control systems that allow real time interaction between the human brain and external devices without the need of peripheral nerve or muscle activation.

Applications

- Individuals who are severely disabled by disorders such as
 - ALS
 - Brainstem stroke
 - Spinal-cord injuries
 - Muscular dystrophies
 - Chronic peripheral neuropathies

Communication

- Yes/No Communication
- Spellers

Movement Control

 Restoration of independent locomotion is another important issue for paralyzed people.

Neuromodulation

 Neuromodulation to replace lost senses

Neurorehabilitation

- Control of prosthetic limb
- Grasp restoration

Environmental Control

- BCI-based environmental control could greatly improve the quality of life of severely disabled people.
- People with severe motor disabilities are often homebound.
- Effective means for controlling their environments- like controlling room temperature, light, power beds, TV would increase their well-being and sense of independence

Environmental Control

Recreation

- Gaming
 - Mindflex EEG controlled obstacle course (2007)
 - OCZ Technology (2008) created a device for playing games controlled by EMG
 - NeuroSky Star Wars Force Trainer (2009)
- Virtual Reality
- Music

Brain Computer Interfaces

- Many Applications ->
 Many Engineering Requirements ->
 Many Architecture Considerations
- But in general: need to isolate, translate, and utilize a neural signal

Architecture of a BCI

BCI Signal Types

BCI Signal Types

Signal	Cell count	Raw Magnitude	Spatial Specificity	Signal Stability
EEG (non-invasive)	> 1M	~50 uV	1-5 cm	Long-term?
ECoG (semi- invasive?)	500K	~500 uV	3-10 mm	Months
Intracortical (invasive)	1-???	10s of mV	< 300 um	Days

Appropriate modality choice depends on application, Consider subject population, Research/Clinical goals, Stimulation requirements.

Feature extraction, intracortical recordings

Feature extraction, ECoG and LFPs

Spectral Estimation:

STFFT

Wavelets

Band filtering and envelope detection Auto-regressive model

Feature extraction, EEG

Signal spreads as it passes through meat

- 1) Correct for spatial spreading
- Use of spherical head model as solution to forward model
- Common Spatial Patterns
- Subject specific MRI as solution to forward model

2) Apply same spectral estimation techniques used in ECoG

Classification

- Intracortical recordings:
 - Translation of neural signal to one or more continuous variables
 - Kalman Filter, Neural Networks, ARMA Models, etc.
- ECoG
 - Translation of neural signal to one or more continuous variables,
 High SNR allows us to be lazy.
- EEG
 - Much harder computational problem, because of low SNR Neural signal typically translated to discrete variable with pre-defined (and pre-trained) number of states
 - SVM, Naïve Bayes, Decision Trees, Random Forest, Neural Network, on and on...

An Inherent Problem

Closed-loop decoder adaptation

BCI- Electrophysilogical Activities use

- SCP Slow Cortical Potentials
- Mu Movement Imagination
- P300, SSVEP ERP-Analysis
- cortical neurons, direct brain interfaces

SSVEP BCIs

- Steady State Visual Evoked Potentials derived from the visual (occipital) cortex
- Focussing attention to visual stimuli of different frequency shows up in the EEG frequency bands
- Relibable and high transfer rate, but some prerequisites (eyes)

SCP BCIs

- Detection of slow cortical potentials (SCPs)
- Needs DC EEG Amplifiers
- First successful device end 1990's:
 - Niels Birbaumers Thought translation device
 - intensive training was necessary to gain
 - control over the SCP waves

SCPs:

DC-shifts, slow negativation of cortical areas

Preparation of movement and cognitive tasks,

Several hundert milliseconds before the task

Patinet using TTD to write a letter

μ-rhythm BCIs

- μ -rhythm is the idle-rhythm of the motor cortex
- Frequencies around 10 and 18 Hz.
- ERD / ERS event related desynchronisation / synchronisation
- Movements or imagination of movements inhibit the μ-rhythm

P300 BCIs

- P300 wave posivite component in the event related potential, 300ms after a stimulus
- Natural response to events considered as important
- Selection of a symbol: count the flashes, algorithm averages trails and finds a P300

BCI- μ / P300 comparison

μ - BCIs

Require training
2D-control possible
Movement imagination
Affected by movement

P300 BCIs

Do not require training
1D control only
concentration / decision
Affected by distraction

Limitations

- Getting a good signal is hard
- Interpretation of signals is hard
- BCIs are currently fairly inaccurate in terms of classifying neural activity
- Surgery needed for electrode placement
- Invasive BCI prone to develops scar tissue

Ethical Considerations

- How can you obtain consent for a BCI from someone that can't communicate?
- Do the benefits outweigh the risks?
- What happens if someone wants to keep a thought secret and BCI detects it?
- What is the limit of what we will do with BCI?
- Could people use BCI to interrogate someone?

Future

- BCI technology seems very applicable in a wide variety of areas whether it be medically or commercially
- Possibilities of how far the systems can go is virtually limitless
- Control of sub vocalization and more advanced EEG processing could lead to telepathic communication and active learning mechanisms
- Virtual Gaming
- Mind Reading
- Brain to Brain Interfaces (BBI)

